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From Phenomenological Studies to Well Layout Optimization:
Innovative workflow to assess geothermal reservoir performances
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Geothermal systems are complex dynamic systems, ... ... structurally, geologically and hydrogeologically controlled, ... ... and well layout dependent.
V Convective cells V Conductive vs. non-conductive behavior of major structures vV Search for highest sustainable electricity production zones
V Flow-path dependent temperature fields V Recharge-dependent temperature & pressure fields V Taking into account identified complexities and uncertainties.
Consequences on geothermal resource
It cannot simply be summarized to estimate a stock of heat but It requires to identify and account for relevant reservoir It requires first to optimize the well-layout based
it is strongly initial / current condition dependent. complexities and uncertainties. on production objectives.
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A four-step approach at prefeasibility study stage (before drilling) | Main available data at the prefeasibility stage | Key expert interpretations & assumptions
Numerical conceptual models: Phenomenological studies: e = g (before drilling) o
based on surface data and sensitivity analysis of initial (current) ,;, “ﬂ' | V Fault depth & inclination controlled by
expert (structural, geological, conditions with structural, geological & V Digital terrain model deep reservoir temperature
geochemical, hydrogeological) and hydrogeological uncertainties V Digitized structural objects V Location, depth & extension of magmatic
interpretations & judgments Vv Gravimetric map intrusions & heat sources
V Resistivity cube from 3D inversion of MT data | V Proportions of lava flow facies
V Geological map & geochemical data V Geological map & geochemical data
Well layout optimization: V Petrophysical data from surface rock samples | Vv Resistivity of clay cap (cap-rock)
based on production objectives, taking V Hydrogeological data (shallow aquifer) Vv Vertical permeability trend!3!

into account all types of uncertainties
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= Reservoir performance assessment:

Silinan L h based on the best well layout(s),

Depth (km)

taking into account all types of
uncertainties

Numerical conceptual model Step 1

Estimation of the clay cap Thermo-mechanical-flow-units
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berth  MT 3D data Support effect i Estimated
correction Stat. estimate surface

Clay-cap bottom . V Main structural and geological
uncertainties
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Estimation of fault & fracture-corridor K, -tensors Flow and heat transport boundary conditions , : :
o . - . P . . = Reservoir matrix properties
1. Densities estimated from digitized objects N Heat Diriclet conditions at Z=-5000 m o Volcano ,
on a well characterized area RS L | « Magmatic intrusion: T = 800°C T * Attenuation of fault and
2. Transmissivities: from literature © Scenarios [& * High geothermal gradient: T = 500°C fracture-corridor transmissivities
3. Distinction by reservoir zones 8 = | through the clay cap
4. Compute K, -tensors assuming locally oo Zass | Surface Diriclet conditions v
discontinuities (Oda’s like method) Example of dlgltlzed * Temperature: T, = 27°C
5. Apply in the clay cap with attenuation fault traces!2! * Pressure: P, =1.013 bars

T¢.. attenuation 5%

V Main hydrogeological uncertainties

Magmatic mtrus:ons

Tr.. attenuation 20%

V Geothermal reservoir simulator
= HYDROTHERM 3D!1]

Going beyond handmade conceptual model sketches and standard “heat in place” methods

Proposed approach -T5 T -T2.5 Available production performance criterions

. ) i == = = ) i . H, = geothermal fluid enthalpy in production well
v Production performance criterion <=kt <l in S <t Se Best well layouts vV Production sustainability (Leftover resource) L, = E H,Q, Q= potential production rate based on a targeted
= Overall production va A P e ol ‘\ = Leftover geothermal production power in watts well-bottom pressure

| vV Overall production
Scenarios

Pl " Steam mass rate Ly Q4 = mass rate of production well &
K20-T2.5 H, = geothermal fluid enthalpy in production well &
= “Exergy”l®] s, = fluid entropy in production well o
Ly — Hy — T, (Sa — SO)) Ty = reference temperature (e.g. 105°C)

Hy, so = enthalpy & entropy at T

=  Production sustainability xEWL

V Optimization parameters e A0S

=  Platform locations and perforation i H .
depths ERSER. vy SuoGa SRR AN\ LT

V Sensitivity analysis parameters \ oinls’ N gjr(f)‘(o';iii/;:‘fi\lfgz

=  Possible platform locations and Ea (44’p’rod. +30 ini.

perforation depths sitsSaiNi - Vv Calculation of electrical power
"  Production mass rates & period ""'=> More than 5E06 well layouts evaluated based on " Mean well-layout rank = Single-flash geothermal power plant 4
V Rese rvoir unce rtainties 3 production wells & 2 injection wells Well-layout ranking based on performance and scenario Wf = flash plant electrical power
= Based on scenarios - ~ K50-T5 K20-T2.5 W. = AH ¢ = turbine efficiency f" of steam mass fractions
V Tools . G ESE BN e TR O f— Ne ng QS 14 = generator efficiency

=  Superposition principle used as a proxy Q, = total production steam mass rate
AH = enthalpy variation through the turbine
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to evaluate the performances of many B L e SRR INCRRFAARARRIc S, W S T s A . . :
well layouts from a few single platform £ ¥ J ity g e e M Power production decrease | Scenario performance gain
. . o o . @ §L—~~u—~ T . }L ,-‘ maE, EmmEmE: g E ’a ‘ i b _ 0 o)
simulations (injection/prod.) e e = K75-T5 +77%
T e e K50-T5
K20-T2.5 +54%

0 i &d =  Basic binary geothermal power plant 4
ngOI ng r (0.18T;,, — 10) W), = net binary plant electrical power
— in A

— Ql T;,, = fluid temperature at exchanger inlet
V Automatic and assisted optimization of numerical simulation parameters 218 Q, = total production liquid mass rate

Vv Dual permeability and porosity model to better account for large scale objects AH = enthalpy variation through the exchanger

V Implementation of “reference” inversion methods for comparison and coupling purposes Scenario | Power production decrease | Scenario performance gain
-
(Extended FAST, Ensemble Kalman Filter, I-TRACT) K75°T5 £ e I _

. - A . . . . K50-T5
V Automatic and assisted calibration of reservoir models against dynamic data workflow design K20.T2.5 e
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