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Geothermal resource assessment Issues

Consequences on geothermal resource

Geothermal systems are complex dynamic systems, …
√ Convective cells
√ Flow-path dependent temperature fields

Two-phase geothermal system showing 
compartments and convective cells
(iso-surface of T = 240°C).

Single (liquid) phase geothermal system 
showing complex hot fluid flow paths
(iso-surface of T = 180°C).

It cannot simply be summarized to estimate a stock of heat but
it is strongly initial / current condition dependent.1

It requires to identify and account for relevant reservoir 
complexities and uncertainties.2

It requires first to optimize the well-layout based 
on production objectives.3

Effects of recharge through the clay cap
(iso-surface of T = 180°C).

Effects of structural and geological 
heterogeneities (iso-surface of T = 240°C).

… structurally, geologically and hydrogeologically controlled, …
√ Conductive vs. non-conductive behavior of major structures
√ Recharge-dependent temperature & pressure fields

… and well layout dependent.
√ Search for highest sustainable electricity production zones
√ Taking into account identified complexities and uncertainties. 

…

8 scenarios

Scenarios

Well-layout ranking based on 
performance and scenario

Mean well-layout rank

Well-layout 
performance

=> 891 072 well layouts evaluated based 
on 5 production & 1 injection platforms

Mean 
perform.

10 zones of interest with 
1 to 3 predefined platforms

=> 31 (x, y, interv.) sites
(18 prod. + 13 inj.)
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Geothermal resource assessment workflow Presentation of the case study
A four-step approach at prefeasibility study stage (before drilling)

Phenomenological studies:
sensitivity analysis of initial (current) 
conditions with structural, geological 
and hydrogeological uncertainties 

Numerical conceptual models:
based on surface data and 
expert (structural, geological, 
geochemical, hydrogeological) 
interpretations & judgments

Reservoir performance assessment:
based on the best well layout(s), 
taking into account all types of 
uncertainties

Well layout optimization:
based on production objectives, taking 

into account all types of uncertainties

Numerical conceptual model Step 1 Phenomenological studies Step 2

Well layout optimization Step 3 Performance assessment Step 4

Ongoing r&d

Estimation of the clay cap
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Estimation of fault & fracture-corridor Keq.-tensors

Iso-surfaces of T = 180°C Good enough scenarios for resource assessment

FAILURE after 
110 000 years

FAILURE after 
140 000 years

FAILURE after
50 000 years

Thermo-mechanical-flow-units

Flow and heat transport boundary conditions

Topo. surfaceSea level 
surface

Clay-cap bottom

Shallow aquiferSea

Clay cap
Upper res.
Lower res.
Deep res.

Heat Diriclet conditions at Z = -5000 m
• Magmatic intrusion: T = 800°C
• High geothermal gradient: T = 500°C

Surface Diriclet conditions
• Temperature: TAtm = 27°C
• Pressure: PAtm = 1.013 bars Magmatic intrusions

Volcano

Uncertainties for phenomenological 
studies and sensitivity analysis

√ Based on extremes and 
intermediate scenarios

√ Main structural and geological 
uncertainties
 Reservoir matrix properties
 Attenuation of fault and

fracture-corridor transmissivities
through the clay cap

√ Main hydrogeological uncertainties

√ Geothermal reservoir simulator
 HYDROTHERM 3D[1]

Key expert interpretations & assumptions

√ Fault depth & inclination controlled by 
deep reservoir temperature

√ Location, depth & extension of magmatic 
intrusions & heat sources

√ Proportions of lava flow facies
√ Geological map & geochemical data
√ Resistivity of clay cap (cap-rock)
√ Vertical permeability trend[3]

Going beyond handmade conceptual model sketches and standard “heat in place” methods

Proposed approach
√ Production performance criterion

 Overall production
 Production sustainability

√ Optimization parameters
 Platform locations and perforation 

depths

√ Sensitivity analysis parameters
 Possible platform locations and 

perforation depths
 Production mass rates & period

√ Reservoir uncertainties
 Based on scenarios 

√ Tools
 Superposition principle used as a proxy 

to evaluate the performances of many 
well layouts from a few single platform 
simulations (injection/prod.)

K75-T5 K50-T5 K20-T2.5

3 scenarios

Predefined 1-sidetrack 
platform locations and 

perforated intervals
=> 74 (x, y, interv.) sites

(44 prod. + 30 inj.)

Mean well-layout rank
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Scenarios

Well-layout ranking based on performance and scenario

Best well layouts
Available production performance criterions
√ Production sustainability (Leftover resource)

 Leftover geothermal production power in watts

√ Overall production
 Steam mass rate

 “Exergy”[5]

√ Calculation of electrical power
 Single-flash geothermal power plant [4]

 Basic binary geothermal power plant [4]

𝐿𝛾 =  

∝∈𝑊𝐿

𝐻𝛼𝑄𝛼
𝐻𝛼 = geothermal fluid enthalpy in production well 
𝑄𝛼 = potential production rate based on a targeted 
well-bottom pressure

𝑊𝑓 = 𝜂𝑡 𝜂𝑔 𝑄𝑠 ∆𝐻

𝑊𝑓 = flash plant electrical power

𝜂𝑡 = turbine efficiency fn of steam mass fractions
𝜂𝑔 = generator efficiency

𝑄𝑠 = total production steam mass rate
∆𝐻 = enthalpy variation through the turbine

𝑊𝑏 =
0.18𝑇𝑖𝑛 − 10

218
∆𝐻 𝑄𝑙

𝑊𝑏 = net binary plant electrical power
𝑇𝑖𝑛 = fluid temperature at exchanger inlet
𝑄𝑙 = total production liquid mass rate
∆𝐻 = enthalpy variation through the exchanger

𝐿𝛾 =  

∝∈𝑊𝐿

𝑄𝛼 𝐻𝛼 −𝐻0 − 𝑇0 𝑠𝛼 − 𝑠0

𝑄𝛼 = mass rate of production well 

𝐻𝛼 = geothermal fluid enthalpy in production well 

𝑠𝛼 = fluid entropy in production well 

𝑇0 = reference temperature (e.g. 105°C)

𝐻0, 𝑠0 = enthalpy & entropy at 𝑇0

Scenario Power production decrease Scenario performance gain
K75-T5 6 % +77%
K50-T5 0 % +0 %
K20-T2.5 3 % +54%

𝐿𝛾 =  

∝∈𝑊𝐿

𝑄𝑠,𝛼

√ Automatic and assisted optimization of numerical simulation parameters
√ Dual permeability and porosity model to better account for large scale objects
√ Implementation of “reference” inversion methods for comparison and coupling purposes

(Extended FAST, Ensemble Kalman Filter, I-TRACT)
√ Automatic and assisted calibration of reservoir models against dynamic data workflow design
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Scenario Power production decrease Scenario performance gain
K75-T5 6 % +73%
K50-T5 2 % +0 %
K20-T2.5 3 % +38%

…

=> More than 5E06 well layouts evaluated based on
3 production wells & 2 injection wells

Main available data at the prefeasibility stage 
(before drilling)

√ Digital terrain model
√ Digitized structural objects
√ Gravimetric map
√ Resistivity cube from 3D inversion of MT data
√ Geological map & geochemical data
√ Petrophysical data from surface rock samples
√ Hydrogeological data (shallow aquifer)

Outcrops

1. Densities estimated from digitized objects
on a well characterized area

2. Transmissivities: from literature  Scenarios

3. Distinction by reservoir zones

4. Compute Keq.-tensors assuming locally ∞
discontinuities (Oda’s like method)

5. Apply in the clay cap with attenuation
Example of digitized 

fault traces[2]

Area of interest


